Teflon/SiO2 Bilayer Passivation for Improving the Electrical Reliability of Oxide TFTs Fabricated Using a New Two-Photomask Self-Alignment Process
نویسندگان
چکیده
This study proposes a two-photomask process for fabricating amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) that exhibit a self-aligned structure. The fabricated TFTs, which lack etching-stop (ES) layers, have undamaged a-IGZO active layers that facilitate superior performance. In addition, we demonstrate a bilayer passivation method that uses a polytetrafluoroethylene (Teflon) and SiO₂ combination layer for improving the electrical reliability of the fabricated TFTs. Teflon was deposited as a buffer layer through thermal evaporation. The Teflon layer exhibited favorable compatibility with the underlying IGZO channel layer and effectively protected the a-IGZO TFTs from plasma damage during SiO₂ deposition, resulting in a negligible initial performance drop in the a-IGZO TFTs. Compared with passivation-free a-IGZO TFTs, passivated TFTs exhibited superior stability even after 168 h of aging under ambient air at 95% relative humidity.
منابع مشابه
Improving the performance of Lithium-Sulfur Batteries using Sulfur-(TiO2/SiO2) yolk–shell Nanostructure
Lithium-Sulfur (Li-S) batteries are considered as one of the promising candidates for next-generation Li batteries in near future. Although, these batteries are suffering from certain drawbacks such as rapid capacity fading during the charge and discharge process due to the dissolution of polysulfides. In this paper, Sulfur/metal oxide (TiO2 and SiO2) yolk–shell structures have been successfull...
متن کاملComplementary Metal–Oxide–Semiconductor Thin-Film Transistor Circuits From a High-Temperature Polycrystalline Silicon Process on Steel Foil Substrates
We fabricated CMOS circuits from polycrystalline silicon films on steel foil substrates at process temperatures up to 950 C. The substrates were 0.2-mm thick steel foil coated with 0.5m thick SiO2. We employed silicon crystallization times ranging from 6 h (600 C) to 20 s (950 C). Thin-film transistors (TFTs) were made in either self-aligned or nonself-aligned geometries. The gate dielectric wa...
متن کاملMechanical Flexibility of Zinc Oxide Thin-film Transistors Prepared by Transfer Printing Method
In the present study, we demonstrate the performance of Zinc oxide thin film transistors (ZnO TFTs) array subjected to the strain under high bending test and the reliability of TFTs was confirmed for the bending fatigue test of 2000 cycles. Initially, ZnO TFTs were fabricated on Si substrate and subsequently transferred on flexible PET substrate using transfer printing process. It was observed ...
متن کاملSelf-alignment techniques for fabricating a-Si:H TFTs at 300C on clear plastic
We previously demonstrated highly stable backchannel cut and back-channel passivated amorphous silicon thin-film transistors (a-Si:H TFTs) made at 300C on 2.9-inch x 2.9-inch clear plastic substrates [1]. Mechanical stress in the TFT stack causes the substrate to expand or contract, which easily results in misalignment between consecutive device layers [2,3]. Therefore we developed three selfal...
متن کاملFabrication and characterization of sol-gel-derived zinc oxide thin-film transistor
Thin-film transistors (TFTs) with zinc oxide channel layers were fabricated through a simple and low-cost solution process. Precursor solution concentration, annealing temperature, and the process were controlled for the purpose of improving the electrical properties of ZnO TFTs and analyzed in terms of microstructural scope. The fabricated ZnO films show preferential orientation of the (002) p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2015